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Abstract

Panoramic optical mapping provides rich spatiotem-
poral information on cardiac electrical activity through
video recordings, where each pixel corresponds to a signal
evolving over time. This complete information can help
characterize different electrical behaviors within the heart
tissue, however, analyzing such a large amount of data ef-
ficiently is challenging. In this study, we propose a novel
methodology for analyzing all the signals simultaneously
and also considering their spatial location. Our approach
reduces the temporal dimensionality of the signals using
manifold learning and then identifies groups of signals us-
ing community detection (Louvain algorithm) and cluster-
ing (K-means). These two techniques were compared both
qualitatively and quantitatively using the modularity in-
dex. For Subject 1 (sinus rhythm), Louvain identified 16
communities with a modularity of 0.8763, while K-means
identified 14 clusters with a modularity of 0.8492. For Sub-
ject 2 (atrial tachycardia), Louvain found 12 communities
(modularity 0.8282) and 15 K-means clusters (modularity
0.8049). Louvain always achieved higher modularity, sug-
gesting more coherent community structures. This method-
ology enables visualization of thousands of signals in a la-
tent space, and may reveal organizational patterns in the
heart, highlight pre-processing requirements, and provide
insight into the propagation of electrical impulses.

1. Introduction

Cardiac arrhythmias represent a significant health prob-
lem in our society, affecting more than 60 million people
worldwide. Depending on the type of arrhythmia, patients
can develop serious complications such as stroke, heart
failure, or even sudden cardiac death if the condition is
not recognized and treated immediately [1]. Therefore, it
is fundamental to study and develop new approaches that
enable a complete understanding of arrhythmias, includ-
ing their underlying mechanisms and their spatiotemporal
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organization within the heart.

Panoramic optical mapping (POM) involves acquiring
images of the heart from multiple viewpoints using mul-
tiple optical cameras, where each camera extracts infor-
mation from a specific heart region. Therefore, this imag-
ing technique provides fluorescent recordings of the elec-
trophysiological activity on the entire epicardial surface,
providing detailed information on the spatiotemporal prop-
agation of electrical activity responsible for maintaining
cardiac arrhythmias [2].

POM provides spatio-temporally rich information in the
form of a video, where each pixel corresponds to a sig-
nal that evolves over time. Therefore, a complete dataset
for a single subject can consist of thousands of signals.
Manifold learning (MnL) techniques can help analyze such
large datasets by reducing their temporal dimensions to
two or three, enabling the visualization of all information
simultaneously in a latent space that preserves the most
relevant features of the original data. Furthermore, the em-
bedded space allows for further analyses, such as identi-
fying groups of signals with shared characteristics, which
can reveal regions of abnormal electrical conduction and
other electrophysiological phenomena [3].

In this study, we propose a methodology that allows
a comprehensive analysis of the information provided by
POM, combining MnL with a comparison of two differ-
ent group detection techniques that can regionalize heart
areas and allow the study of their behavior. The structure
of this work is as follows. The methodology is detailed in
Section 2, the experiments performed and the results ob-
tained are presented in Section 3, and the conclusions are
summarized in Section 4.

2. Methodology

The methodology proposed in this work consists of re-
ducing the temporal dimensionality of the data to three
using Uniform Manifold Approximation and Projection
(UMAP) [4], identifying communities in the embedded
space with the Louvain algorithm [5] or clusters with K-
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means [6], and reconstructing the original image. The
three methods are summarized in this Section.

UMAP is a MnL method that projects high-dimensional
data into a latent space while preserving both local and
global structures. It achieves this by constructing a high-
dimensional graph representation of the data and then
optimizing a corresponding low-dimensional graph to be
as structurally similar as possible to its high-dimensional
counterpart. In this framework, UMAP characterizes the
similarity between two points X; and x; in the original
space as probabilities (p;;), and also between their corre-
sponding embeddings y; and yj in the lower dimensional
space (g;;). Then, the binary cross entropy (BCE) between
Dij and qij» i.e.,

C = Zzp” IOg <plj> + (1 _pij) log (1%) y
P dij — qij
ey
is minimized using the stochastic gradient descent algo-
rithm. The first term of the BCE function encourages
the embeddings of neighboring points to move closer to-
gether, and is activated when x; is a neighbor of x;, or
vice versa, or when both points are neighbors. In contrast,
the second term repels the embeddings of non-neighboring
points, pushing them farther apart.
The Louvain algorithm uses the UMAP-optimized
graph to detect nonoverlapping communities by maximiz-
ing the graph modularity (GM), defined as follows.

1 ki - k;

ij

where m is the number of edges, A;; indicates whether
the nodes ¢ and j are connected, k; is the degree of the
node ¢, and &(c;, ¢;) equals 1 if the nodes ¢ and j belong
to the same community and O otherwise. The Louvain
algorithm consists of two phases. During the local opti-
mization phase, nodes are reassigned to neighboring com-
munities if this increases GM, and during the aggregation
phase, nodes in the same community are merged into a
single node to form a reduced graph. These phases repeat
iteratively until GM can no longer be improved.

K-means is a clustering algorithm that divides a
dataset into K non-overlapping groups by minimiz-
ing the variance within the cluster. It organizes data
points {y1,y2,...,¥n} into K clusters with centroids
{W1, he, - ., 1 }- The objective function to minimize is
defined as follows,

K
T=>0 > lxi— el (3)

k=1x;€Cyx

where C}, is the set of points assigned to the group £,
and p,;, is the centroid of that group. The algorithm con-
sists of two steps, that is, the assignment step, where each

-
B

e
o

e
o

e
'S

e
[\

Normalized CH index

5 10 15 20 25
Number of clusters

Figure 1: Normalized CH index as a function of the

number of clusters for Subjects 1 (blue) and 2 (purple).

The global maximum of each curve (red) and the second-
highest peak for Subject 1 (green) are marked.

point x; is assigned to its nearest centroid, and the update
step, where each centroid is recomputed as the mean of the
points assigned to it. These steps are repeated until the as-
signments no longer change or the decrease in .J becomes
negligible.

3. Experiments and Results

In this study, we analyzed data obtained from POM
experiments performed on isolated rabbit hearts main-
tained by Langendorff perfusion. The recordings were ac-
quired simultaneously with three cameras, providing mul-
tiple views of the epicardial surface. Two subjects were
studied: one with sinus rhythm (Subject 1) and one with
atrial tachycardia (Subject 2). The complete acquisition
protocol is described in [2]. The data were pre-processed
in two steps. First, a three-dimensional (3D) median filter
with a spatial window of 3 x 3 pixels and a temporal depth
of 5 samples was applied to eliminate high-frequency noise
while preserving physiological information. Second, a 4"
order high-pass Butterworth filter with a cutoff frequency
of 1 Hz was applied in a zero-phase manner to eliminate
baseline wander without distorting the signal. After fil-
tering, the data were normalized to the [0,1] range. After
preprocessing, UMAP was applied to project each signal
into a 3D space. After that, Louvain and K-means were
applied to the embedded space and the modularity index
was computed to facilitate a quantitative comparison of the
grouping results.

One disadvantage of K-means compared to Louvain is
that the number of clusters must be specified beforehand.
To determine this value, the Calinski—Harabasz (CH) in-
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Figure 2: Latent spaces obtained with UMAP (first column), where colors represent communities detected by Louvain
(odd rows) or clusters identified by K-means (even rows). Columns two to four show the original image reconstructions for
cameras 1, 2, and 3, respectively. Rows 1 and 2 present results for Subject 1, and rows 3 and 4 present results for Subject
2. The colorbar indicates the number of groups identified in each case and their associated colors.
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dex was used. Figure 1 shows the normalized CH index
for 2 to 25 clusters for Subject 1 (blue) and Subject 2 (pur-
ple). The optimal number of clusters for each subject is
highlighted in red, corresponding to 2 clusters for Subject
1 and 15 clusters for Subject 2. However, since 2 clusters
were insufficient to analyze the structural or mechanistic
characteristics of the signals, we selected K = 14 for Sub-
ject 1, corresponding to the second highest CH index.

Figure 2 shows the complete latent spaces (left) and the
original image reconstruction with the colors of the groups
encountered (second to last columns). Communities ob-
tained by Louvain are shown in the first and third rows
for Subjects 1 and 2, respectively, and clusters obtained
by K-means are shown in the second and fourth rows for
Subjects 1 and 2, respectively. In Subject 1, there are two
well-differentiated clouds of points, one containing the in-
formation in cameras 1 and 3, and the other containing the
information in camera 2. In this subject, both Louvain and
K-means offered similar grouping strategies, with Louvain
detecting 16 communities compared to 14 clusters for K-
means. The modularity values were 0.8763 for Louvain
and 0.8492 for the K-means, indicating that Louvain pro-
vided a slightly better community structure. In Subject 2,
the ROI was smaller, which may suggest a shared field of
view among the different cameras. This overlap may ex-
plain why Louvain and K-means identified the signals in
the upper part of camera 1, the lower left part of camera
2, and the left part of camera 3 as belonging to the same
communities. In this case, Louvain detected 12 commu-
nities and 15 clusters of K-means, with modularity values
of 0.8282 and 0.8049. In general, both methods gener-
ated meaningful groups, with Louvain achieving a higher
modularity, suggesting better consistency in the detected
grouping structure.

By focusing on the reconstructed images in Fig. 2, it
can be observed that some groups lie close to each other,
while others are farther apart, suggesting a progression of
communities that may reflect the propagation of the electri-
cal impulse across the epicardium. Each group represents
a region of the epicardial surface whose signals exhibit a
similar behavior, which may be associated with underly-
ing organizational patterns of electrical activity. In addi-
tion, some communities appear to contain noisier signals,
likely due to a higher level of noise in the original record-
ings. This, in turn, influences the grouping strategy and
can be used to identify which sets of signals require addi-
tional preprocessing, as well as the type of preprocessing,
to improve subsequent analyses.

4. Conclusions

This work proposes a methodology for analyzing large
datasets of high-dimensional spatio-temporal POM signals
using MnL and grouping algorithms, i.e., Louvain and K-

means. Our approach enables the simultaneous analysis
of thousands of recordings from a single patient, provid-
ing a spatio-temporal view of epicardial POM signals that
may yield insights into organizational patterns in the heart,
additional pre-processing requirements, and even the prop-
agation of electrical impulses. When comparing Louvain
community detection and K-means clustering, Louvain al-
ways achieved higher modularity. It should be noted that
partial overlap exists between the cameras fields of view,
which may influence the spatial distribution of the detected
groups. Future work could integrate electrical recordings
that were captured simultaneously to validate and further
characterize the groups detected in the optical signals.
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